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Abstract

We describe an algorithm for simultaneous refinement of a three-dimensional (3-D) density map and of the orientation param-
eters of two-dimensional (2-D) projections that are used to reconstruct this map. The application is in electron microscopy, where
the 3-D structure of a protein has to be determined from a set of 2-D projections collected at random but initially unknown angles.
The design of the algorithm is based on the assumption that initial low resolution approximation of the density map and reasonable
guesses for orientation parameters are available. Thus, the algorithm is applicable in final stages of the structure refinement, when
the quality of the results is of main concern. We define the objective function to be minimized in real space and solve the resulting
nonlinear optimization problem using a Quasi-Newton algorithm. We calculate analytical derivatives with respect to density distri-
bution and the finite difference approximations of derivatives with respect to orientation parameters. We demonstrate that calcula-
tion of derivatives is robust with respect to noise in the data. This is due to the fact that noise is annihilated by the back-projection
operations. Our algorithm is distinguished from other orientation refinement methods (i) by the simultaneous update of the density
map and orientation parameters resulting in a highly efficient computational scheme and (ii) by the high quality of the results pro-
duced by a direct minimization of the discrepancy between the 2-D data and the projected views of the reconstructed 3-D structure.
We demonstrate the speed and accuracy of our method by using simulated data.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In single particle analysis the data are available in the
form of two-dimensional (2-D) electron microscopy
(EM)1 projections of a three-dimensional (3-D) electron
density map of a biological macromolecule. The goal of
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the analysis is to recover the 3-D structure, but the direc-
tions of projections are unknown. The initial guess for
the projection directions can be established either exper-
imentally using the random conical tilt technique (Rad-
ermacher et al., 1987) or computationally (Goncharov,
1986; van Heel, 1987; Goncharov et al., 1987; Penczek
et al., 1996). In either case, the errors in projection direc-
tions will be large and the resulting initial structure will
have low resolution, so the subsequent refinement of the
orientation parameters assigned to projections is
necessary.

The currently used refinement procedures can be
roughly divided into two groups: (i) those that are based
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on comparison of the 2-D projection data with the sys-
tematically generated projections of the current guess of
the structure and (ii) those that seek to correct orienta-
tion parameters by minimizing an overall alignment er-
ror among projections. The first category is prominently
represented by the projection matching technique (Pen-
czek et al., 1994). In this approach, the step of orienta-
tion correction is separated from the step of
calculating the 3-D reconstruction of the new density
map. Since the method is implemented in real space,
i.e., both the projection operations and the 3-D recon-
struction are carried out in the object space, the method
is reasonably efficient and the interpolation errors are
minimized. Nevertheless, because of the separation of
the two key steps of the procedure the reassignment of
the projection direction does not necessarily guarantee
the improvement of the density map. In addition, any
artifacts introduced into the density map by the recon-
struction algorithm will propagate into subsequent steps
of the procedure. The methods that fall into the second
category are usually implemented by using transforma-
tions to map the projection data into spaces in which
the data can be conveniently manipulated. Examples
of such transformations are spherical harmonics trans-
formation (Navaza, 2003; Provencher and Vogel, 1988;
Yin et al., 2003), Fourier transformation (Grigorieff,
1998), and Radon transformation (Radermacher, 1994;
Radermacher et al., 2001). The main advantage of these
approaches is that the problem of separating the orien-
tation search from the 3-D reconstruction is eliminated,
as the resulting structure in real space can be calculated
only once, after the convergence of the orientation
determination algorithm is achieved. Unfortunately,
none of the methods in this group can be used to per-
form exhaustive searches in an efficient way. Conse-
quently, these methods are more appropriate for the
final stages of the structure refinement. On a more fun-
damental level, a major drawback associated with work-
ing in transformed spaces is that the data (2-D
projections) are represented in polar coordinates, while
the resulting 3-D structure must be obtained in (uni-
form) Cartesian coordinates. Transformation from a
nonuniform polar grid to the uniform grid constitutes
a difficult inverse problem that is sensitive to the pres-
ence of noise in the data and to interpolation errors
(Penczek et al., 2004). Therefore, even if an optimum
solution for the orientation problem is found in the
transformed space, it is not immediately apparent that
the solution corresponds to an optimum 3-D structure
in Cartesian space, as the two are separated by a poten-
tially ill-posed inverse transformation. So far, little
attention has been devoted to the error analysis in the
orientation searches in transformed spaces.

In order to overcome some of the shortcomings of the
existing structure determination methods we propose a
new approach based on the direct and simultaneous
optimization of both the density map and orientation
parameters of the projection data. In our method we
seek solution to the problem that is formulated in the
measurement space, i.e., the real space. In this way, we
hope to minimize the adverse effect of the interpolation
errors on the refinement procedure. In addition, by inte-
grating the inverse to the projection transformation di-
rectly into the framework of the optimization problem,
we are able to fully explore the interdependence between
the orientation of the projection data and the 3-D struc-
ture to be reconstructed.

Formally, we state the estimation of the 3-D electron
density map (denoted by f 2 Rn3 ) of a biological mole-
cule from a large number of 2-D EM projection images,
bi 2 Rn2 , i = 1, 2, . . . , m, of isolated (single) particles with
random and unknown orientations as a nonlinear opti-
mization problem:

min
/i;hi;wi ;sxi ;syi ;f

qð/i; hi;wi; sxi ; syi ; f Þ

¼ 1

2

Xm
i¼1

kP ð/i; hi;wiÞf sxi ; syi
� �

� bik2; ð1Þ

where P(/i, hi, wi) is a line integral operator that projects
f onto a 2-D plane after f is shifted by ðsxi ; syiÞ and ro-
tated by a set of unknown Euler angles (/i, hi, wi).
The factor of 1/2 is included merely for convenience.

The objective function in (1) is clearly nonlinear due
to the coupling between the orientation parameters
ð/i; hi;wi; sxi ; syiÞ, i = 1, 2, . . . , m, and the 3-D density f.
The total number of unknown parameters to be esti-
mated is n3 + 5m. Note that in single particle analysis
the number of projection data m is far greater than the
linear size of the data in pixels, i.e., m� n.

We are interested in numerical methods for finding an
optimal solution to (1) with the assumption that reason-
able approximations to f and ð/i; hi;wi; sxi ; syiÞ, i = 1,
2, . . . , m are available. That is, we are concerned with
a local optimization scheme instead of trying to tackle
(1) as a global optimization problem. Methods for
obtaining an initial low resolution approximation to f

can be found in (Goncharov, 1986; van Heel, 1987;
Goncharov et al., 1987; Penczek et al., 1996).

A generalized coordinate descent algorithm called
projection matching is presented in (Penczek et al.,
1994) to seek a minimizer of (1) in two alternating search
directions. Starting from a given low resolution density
approximation f(0), the algorithm performs an exhaus-
tive search for the optimal Euler angles (/i, hi, wi) and
a restricted search for the optimal translations ðsxi ; syiÞ
associated with each EM projection image bi. These
searches are carried out by comparing bi with a set of
reference projections pj, (j = 1, 2, . . . , mr) produced by
computationally re-projecting f(0) in directions specified
by a set of prescribed and quasi-uniformly distributed
Euler angles ð/̂j; ĥj; ŵjÞ, j = 1, 2, . . . , mr. The set of an-
gles and shifts that yields the minimum value of ibi�pji
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is assigned to bi. Once each EM projection image has
been assigned a set of reference Euler angles ð/̂i; ĥi; ŵiÞ
and shifts ðŝxi ; ŝyiÞ, a new density map f(1) is computed
by solving a linear least squares problem

min
f

1

2

Xm
i¼1

kP ð/̂i; ĥi; ŵiÞf � bik2; ð2Þ

preferably using a version of the iterative algebraic
reconstruction technique, such as SIRT, which yields a
high quality estimate of the density map (Penczek et
al., 1992, 2004). Subsequently, the optimal solution to
(2) is used to begin the next cycle of the iterative process
until a stationary point of (1) is identified.

The experimental results presented in (Penczek et al.,
1994) demonstrated that projection matching is quite
effective for the reconstruction of the ribosome complex
eventually leading to determination of the structure of
70S E. coli ribosome at 11.5 Å resolution (Gabashvili et
al., 2000). Projection matching also proved to be equally
effective for determination of structures of a variety of
macromolecular assemblies, both asymmetric (Beck-
mann et al., 1997; Craighead et al., 2002) and symmetric
(Boisset et al., 1995). Unfortunately, little is known about
the theoretical convergence properties of the method.
Based on our experience, we can state that the overall per-
formance of the projection matching method is mainly
limited by the separation of the search for the orientation
parameters from the 3-D reconstruction that yields a new
densitymap.Although this separation results in a compu-
tational scheme that is reasonably efficient, the conver-
gence of the method is sometimes unpredictable. It is
important to notice that during the first phase of each
iteration, the correction of the orientation parameters
associated with one particular projection image is carried
out independently from those associated with the remain-
ing projections. Clearly, this approach does not necessar-
ily guarantee decrease of the target function (1). In fact, it
can even increase its value, especially if the second phase
of the iteration is not carried out accurately. A more
appropriate strategy is perhaps to update the density
map by solving (2) after the assignment of orientation
parameters to each projection is completed, but such an
approach would be prohibitively time consuming. In
addition, the result is bound to depend on the order in
which projections are processed.

In this paper, we will demonstrate that the search for
the optimal density and orientation parameters can be
carried out simultaneously by applying a Quasi-Newton
algorithm (Norcedal and Wright, 1999) to (1) directly.
The simultaneous search offers the benefits of potentially
more rapid convergence and lower computational cost.
Because it puts the correction of the 3-D structure and
the correction of the orientation parameters on an equal
footing, the problem of error propagation, which tends
to occur in the projection matching algorithm, is
mitigated.
2. Methods

In this section we present the optimization method we
use to solve the unconstrained nonlinear problem of the
simultaneous 3-D structure and projection orientation
refinement given by (1). We selected a Quasi-Newton
scheme, in which the approximation to the inverse of
the Hessian is constructed incrementally by making
use of the gradient information gathered at previous
iterations. In the current presentation of the algorithm
we assume there are no translational errors; however,
this does not restrict the generality of the approach as
additional unknown parameters can be introduced nat-
urally within the framework of the selected optimization
method. We conclude the section by providing an anal-
ysis of the computational complexity of the algorithm
and demonstrating that it compares favorably with that
of the projection matching method.

In the discussion that follows, we use q(x) to repre-
sent the objective function to be optimized in (1), where
xT = ( f T /1 � � � /m h1 � � � hm w1 � � � wm) is a vector repre-
sentation of the unknown parameters contained in (1).
Note the absence of translational errors. It is convenient
to express q(x) as

qðxÞ ¼ 1

2
krðxÞk2; ð3Þ

where

rðxÞ ¼

P ð/1; h1;w1Þf � b1
P ð/2; h2;w2Þf � b2

..

.

P ð/m; hm;wmÞf � bm

0
BBBB@

1
CCCCA ð4Þ

is the residual vector that measures the discrepancy be-
tween the data and the re-projected 3-D structure. Note
that each sub-component of this residual vector, P(/i, hi,
wi)f�bi, provides a measure of consistency between a
particle image and a single 2-D projection of the 3-D
model along one particular direction. The norm of this
sub-component, which will be computed as part of the
objective function evaluation in a quasi-Newton algo-
rithm, plays the same role as a cross-correlation coeffi-
cient that is sometimes used in a projection matching
algorithm to discard particle images with poor quality.
However, removing some of the 2-D images during the
course of the refinement essentially amounts to redefin-
ing the objective function defined in (1) and would have
to be carried out carefully.

The standard numerical procedure for solving an
unconstrained nonlinear optimization problem (1) can
be described as follows. Given a starting guess x(0) of
the optimal solution x, one seeks a search direction s

such that q(x(0) + as) < q(x(0)), for some choice of a.
Commonly used search directions are the steepest des-
cent direction (negative of the gradient), the Newton
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direction, the Quasi-Newton direction, and the Gauss–
Newton direction. Once a search direction is chosen,
one can use either a line search or a trust region strategy
(Norcedal, 1991) to select an appropriate step length
a. (The use of a trust region also refines the search
direction.) If the objective function remains large
at the new iterate x(1) = x(0) + a Æ s, a new search direc-
tion and step length are computed. These steps are
repeated until there is no further reduction in q(x(k))
for some k.

The computation of the search direction usually
involves evaluating the derivatives of q(x) with respect
to each parameter contained in x. If the steepest descent
direction is chosen as the search direction, one only
needs to compute the first derivative of q(x) with respect
to all elements of x. The second derivatives or their
approximations are required for Newton, quasi-New-
ton, and Gauss–Newton directions.

It is generally difficult to compute the analytical
derivatives of q(x) with respect to the orientation
parameters. However, these derivatives can be approxi-
mated through the use of the finite difference technique.
For example, one may compute the partial derivative of
q(x) with respect to /i as follows:

oq
o/i

� gTi ri; ð5Þ

where

gi ¼
P ð/i þ D/; hi;wiÞ � Pð/i; hi;wiÞ

D/
f ;

ri ¼ P ð/i; hi;wiÞf � bi: ð6Þ
It is easy to verify that the gradient of q(x) can be ex-
pressed by

rqðxÞ ¼ JTr; ð7Þ
where J is the Jacobian matrix that has the form of

J ¼

P 1 g/1 gh1 gw1
P 2 g/2 gh2 gw2

..

. . .
. . .

. . .
.

Pm g/m ghm gwm

0
BBBBB@

1
CCCCCA
;

ð8Þ

and

P i ¼ P ð/i; hi;wiÞ; ð9Þ

g/i ¼ P ð/i þ D/; hi;wiÞ � P ð/i; hi;wiÞ
D/

f ;

ghi ¼
P ð/i; hi þ Dh;wiÞ � P ð/i; hi;wiÞ

Dh
f ;

g/i ¼ P ð/i; hi;wi þ DwÞ � P ð/i; hi;wiÞ
Dw

f :
Although the dimension of the Jacobian matrix, which
is n2m · (n3 + 3m), is large, the matrix itself is quite
sparse. Furthermore, the gradient calculation does
not require J to be stored explicitly; therefore, the com-
putation of JTr can be accomplished iteratively using a
sequence of projection and back-projection calcula-
tions. As explained earlier, we restrict our analysis to
the case where there are no translational errors. If
the shifts were included, the Jacobian matrix (8) would
contain two more block diagonal submatrices and its
dimensions would increase accordingly. However, the
sparsity structure of the matrix would remain essen-
tially the same, and in general terms the analysis pre-
sented below would hold.

The negative of the gradient gives the steepest descent
direction which one may use directly to search for a lo-
cal minimum of (1). However, an optimization algo-
rithm based purely on the steepest descent search
direction may have a very slow convergence rate. To
accelerate the convergence of a gradient-based algo-
rithm, one often needs additional information about
the curvature of the objective function. Because it is gen-
erally not practical to compute the Hessian of q(x) di-
rectly, we resort to a quasi-Newton scheme in which
an approximation to the inverse of the Hessian is con-
structed incrementally by making use of the gradient
information gathered at previous iterations. In particu-
lar, one obtains a search direction by solving

Bksk ¼ �rqðxkÞ; ð10Þ
where Bk is an approximate Hessian of q(x). We follow
the limited-memory Broyden, Fletcher, Goldfarb, and
Shannon (LBFGS) algorithm (Norcedal, 1980) to up-
date the approximate Hessian (or its inverse) using a
low rank modification. The term ‘‘limited-memory’’ re-
fers to the fact that the LBFGS algorithm requires sav-
ing only a fixed number of gradient vectors computed in
previous iterations. These gradient vectors are used to
provide a compact representation of an approximate
Hessian. The approximate Hessian matrix Bk (or its in-
verse) is never stored explicitly.

The predominant computational cost of the LBFGS
algorithm is the function and gradient evaluations per-
formed during each iteration step. The evaluation of
the objective function (1) involves m projection calcula-
tions. If linear interpolations are used in these calcula-
tions, the function evaluation consumes O(mn3)
floating point operations (flops). To calculate the gradi-
ent, six (assuming we are considering shifts) or four (if
only the Eulerian angles are refined) projections and
one back-projection are required for each 2-D particle
image. These operations also have a computational
complexity of O(mn3). Thus, the overall complexity of
the function and gradient calculations is O(mn3) with a
constant factor that is less than 10. This complexity
analysis compares favorably with that associated with
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the projection matching algorithm. In projection match-
ing, the search for the optimal in-plane rotation is typi-
cally carried out by cross-correlating a particle image
with a reference projection, which consumes O (n2 logn)
flops with a multiplicative factor that depends on the
range of translations considered (Joyeux and Penczek,
2002). In addition, the use of SIRT in solving (2) con-
sumes O (kmn3) flops, where k is the number of SIRT
iterations required to reach the minimum of (2). Thus,
the overall computational complexity of the projection
matching algorithm is at least O (kmn3 + mnrn

2 logn),
where nr is the number of reference images generated
to carry out exhaustive orientation search. Typically,
nr is much larger than n, hence the cost of projection
matching tends to be significantly higher than that of
LBFGS on a per iteration basis. When good initial
guesses of the orientation parameters are available,
one can potentially perform a localized search. This
can reduce the number of cross-correlations and thus
improves the efficiency of projection matching.
3. Results

In this section, we describe experimental results ob-
tained from applying the simultaneous structure and
orientation optimization technique developed in Section
2 to simulated data.

3.1. Preparation of the test data

We use the 3-D density map of the multisubunit tran-
scription factor IID (TFIID) complex published in (An-
del et al., 1999) to generate our test data. The 3-D map is
placed in a volume 643 voxels, with the voxel size 7 Å.
The resolution of the structure is 35 Å. Three different
3-D views of the structure are shown in Fig. 1. This 3-
D map serves as part of the ideal solution to the optimi-
zation problem (1) that we try to solve.
Fig. 1. The isosurfaces of the TFIID structure from three different viewin
vis5d.sourceforge.net/). The leftmost view (A) is the top view; (B) is the fron
(C) is obtained by rotating (B) by another 90� around the vertical axis.
We project the ideal 3-D TFIID structure f computa-
tionally in 34,429 quasi-uniformly distributed directions
using a 0.77� angular step (Penczek et al., 1994). Among
these 2-D projection images, we randomly select 799
images as the actual 2-D data set to be used in the sub-
sequent computation. That is, these 799 images bi (i=1,
2, . . ., 799) are used to recover the 3-D structure f and the
random projection (Euler) angles (/i,hi,wi),
(i = 1,2, . . . , 799) simultaneously. Trilinear interpolation
is used for the projection calculation. The purpose of
generating a set of 2-D projection data in such a fashion
is to mimic the random distribution of viewing angles
associated with experimental data.

The initial guess of the 3-D structure used to start the
LBFGS optimization procedure is a low resolution 3-D
structure obtained from a random conical tilt recon-
struction using images pairs collected from tilted (32�)
and untilted (0�) samples. During the original work on
TFIID structure determination, this random conical tilt
structure was used to initiate the projection matching
procedure that lead to the eventual determination of
the complex (Andel et al., 1999). Three different 3-D
views of this initial structure are shown in Fig. 2.

Because the unknown parameters contained in our
problem formulation include both the density of TFIID
at each voxel and the Euler angles associated with each
projection image, we need to provide initial guesses for
the Euler angles also. These initial guesses for (/i,hi,wi)
(i = 1,2, . . . , 799) are generated by perturbing the ‘‘ex-
act’’ angles (that are used to generate the projection
data) by D/i, Dhi, and Dwi, respectively, where D/i,
Dhi, and Dwi are from a Gaussian distribution
N (0,30�). The distribution of initial guesses for (/i,hi)
(which defines the ith projection direction) is shown in
Fig. 3 along with the distribution of the exact projection
directions.

The low resolution 3-D structure and the perturbed
orientation parameters form the starting point x(0) re-
quired for the LBFGS optimization procedure.
g angles. These surface renderings are generated by Vis5D (http://
t view obtained by rotating (A) by 90� around the horizontal axis; and

http://vis5d.sourceforge.net/
http://vis5d.sourceforge.net/


Fig. 2. The isosurface of the initial guess of the TFIID structure from three different view angles. The leftmost view (A) is the top view; (B) is the
front view obtained by rotating (A) by 90� around the horizontal axis; and (C) is obtained by rotating (B) by another 90� around the vertical axis.

Fig. 3. The distribution of the exact projection directions defined by
(/i, hi) (the blue dots) and initial guesses of these projection directions
defined by ð/̂i; ĥiÞ (the red dots).

Fig. 4. The objective function defined in (1) decreases monotonically
during the first 100 LBFGS iterations.
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3.2. Convergence history

We monitor the convergence of the LBFGS algo-
rithm by evaluating both the objective function q(x)
and the relative error in the 3-D structure after each iter-
ation step. If the 3-D structure constructed at the jth
iteration is denoted by f (j), then the relative error of
the structure is defined by

dj ¼
kf � f ðjÞk

kf k : ð11Þ

In Fig. 4 we show that the objective function of the
optimization problem defined in (1) decreases monoton-
ically. After 100 iterations, the objective function is re-
duced by nearly two orders of magnitude. In Fig. 5,
we show that the relative error in f decreases from
0.80 (80% error in norm) to roughly 0.11 (11% error
in norm) after 100 iterations. Although the reduction
in the relative error is not strictly monotonic, the pro-
gress towards convergence is steady.

3.3. Quality of the reconstruction

In Fig. 6 we show the comparison of the recon-
structed 3-D structure of TFIID with the original struc-
ture that is used to generate the projection data. The
isosurface rendering of the reconstructed 3-D structure
appears nearly indistinguishable from that of the origi-
nal TFIID structure.

We also plotted the distributions of the projection
directions recovered from the LBFGS calculation. In
Fig. 7 we show that most of the projection directions
(defined by the angles /i and hi) match with the original
directions along which the 2-D data is generated. To as-



Fig. 5. The relative error of the 3-D structure as a function of the
number of LBFGS iterations.

Fig. 7. Comparison of the exact (blue dots) and estimated projection
directions (red dots).

C. Yang et al. / Journal of Structural Biology xxx (2004) xxx–xxx 7

ARTICLE IN PRESS
sess the resolution of the reconstructed 3-D volume, we
computed the Fourier shell correlation (FSC) (Saxton
and Baumeister, 1982) between f (100) and f. In Fig. 9
we show that FSC curve drops below the 0.5 cutoff at
spatial frequency �1/39 Å�1.

3.4. Comparison with projection matching

The LBFGS algorithm used to simultaneously refine
the 3-D structure and the orientation parameters associ-
ated with each projection image is a local optimization
scheme. The success of this method depends on having
a good starting guess for the 3-D structure and orienta-
tions of projections. When such a good initial guess is
available, the method can be very efficient in finding
the optimal solution to (1). The most time-consuming
part of the calculation is the gradient evaluation per-
formed at each step. As we illustrated above, the gradi-
ent calculation is significantly cheaper than the
exhaustive search one typically performs in the projec-
tion-matching algorithm.
Fig. 6. The reconstructed 3-D structure of TFIID. The leftmost view (A) is th
the horizontal axis; and (C) is obtained by rotating (B) by another 90� arou
In Fig. 8 we show the cost comparison (in terms of
wall clock time) between the simultaneous structure
and orientation refinement using LBFGS and two ver-
sions of the projection matching algorithm. In the first
version of the projection matching method (marked by
�+�), an exhaustive search for all possible projection
directions with an angular step of 5� was performed.
In this case, the number of reference projection images
used in the matching algorithm was 799. In the second
version (marked by circles), a localized search within
the cone neighborhood of 30� was carried out. This
restriction of the angular search resulted in a smaller
number of comparisons and consequently in a decrease
in wall clock time. The SPIDER implementation of
SIRT algorithm (command �BP RP�) (Penczek et al.,
1992) was used to perform the 3-D reconstruction with
the number of iterations set to 100. Both LBFGS and
e top view; (B) is the front view obtained by rotating (A) by 90� around
nd the vertical axis.



Fig. 9. Comparison of the FSC curves produced by projection
matching and simultaneous refinement.

Fig. 8. Comparison of computational time required consumed by
projection matching and by LBFGS. The relative error is plotted as a
function of the wall clock time used on a 16 · 375 Mhz IBM Power 3
processors.
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projection matching were implemented within a frame-
work of SPIDER system (Frank et al., 1996) using
MPI parallelization (Pacheco, 1996). The calculations
were carried out on an IBM SP at the National Energy
Research Scientific Computing Center, which comprises
of 375 Mhz Power 3 processors. Each Power 3 processor
is equipped with a 2 MB cache, and it has a peak perfor-
mance of 1.5 Gflops/s. We used 16 processors in our
experiments.

We ran 200 iterations of LBFGS iterations. Each iter-
ation took approximately 2 wall clock seconds on 16
processors. At the end of the 200th iteration, the relative
error became less than 0.09. The total wall clock time
consumed on 16 processors was slightly over 400 s. In
contrast, the relative error was reduced significantly dur-
ing the first few projection matching iterations as the
matching algorithm identified the approximate orienta-
tion for each projection image. However, the rate of
convergence then slowed down considerably during sub-
sequent iterations. When an exhaustive search was per-
formed, each iteration of the projection matching took
roughly 85 wall clock seconds on 16 processors. The rel-
ative error decreased to 0.12 at the 10th iteration. A to-
tal of over 800 wall clock seconds was consumed. The
algorithm appeared to stall at this point because it could
no longer resolve the projection directions that did not
lie on the quasi-uniform search grid (with a 5� angular
step) associated with the reference projections. When a
localized search was performed in the projection match-
ing algorithm, each iteration took approximately 54 wall
clock seconds. The relative error decreased to 0.14 at the
end of 5th iteration and the algorithm appeared to stall
at that point and the relative error even began to in-
crease slightly beyond that point indicating the amplifi-
cation of the noise introduced by numerical round-offs.
More than 500 wall clock seconds were consumed at the
end of the 10th iteration. The reason that a localized
search converged to a suboptimal solution was that
the initial guesses for some of the Euler angles were
not located within the 30� neighborhood of the true Eu-
ler angles. Hence the localized search missed these an-
gles leading to a poorer solution.

In Fig. 9 we show the comparison of the FSC be-
tween f and f ð100Þ

q with the FSC between f and f ð11Þ
p ,

where f is the ideal 3-D density function, f ð100Þ
q is the

3-D density recovered at the end of the 100th LBFGS
iteration, and f ð11Þ

p is the 3-D density produced at the
end of the 11th iteration of the projection matching
algorithm. As we already pointed out earlier, the FSC
curve associated with the LBFGS refinement drops be-
low the 0.5 cutoff at the spatial frequency �1/39Å�1,
which is close to the highest resolution (35 Å) one can
achieve for this particular data set. Furthermore, the
FSC values are close to one (the optimal correlation va-
lue) at low frequencies until the resolution limit is nearly
reached. In terms of the FSC, the projection matching
algorithm produces a solution with a comparable resolu-
tion. However, it can be seen from Fig. 9 that the FSC
curve associated with the projection matching recon-
struction is not as close to one in the intermediate fre-
quency range as that associated to the LBFGS
reconstruction. This is likely to be even more pro-
nounced if the 3-D model to be reconstructed were to
contain prominent high frequency features.

3.5. The effect of noise

In electron microscopy, the 2-D projection images are
typically noisy. In this section, we illustrate the effect of
noise on the convergence of the LBFGS algorithm. We
generated the noise-corrupted images as follows. For
each projection image we used in the previous



Fig. 11. Comparison of the FSC curves associated with a noise-free
and a noise-corrupted refinement of the TFIID data.
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experiments, we added zero-mean Gaussian noise scaled
such that the resulting signal-to-noise ratio (SNR) in the
2-D projection image was one. See Fig. 10

The introduction of noise in the data slowed the con-
vergence of LBFGS slightly (Fig. 11). Although the
objective function decreases monotonically, which indi-
cates that the gradient vector is not severally corrupted
by noise, the relative error in the reconstructed 3-D den-
sity appears to reach the minimum around the 80th iter-
ation. After the 80th iteration, the relative error starts to
increase, indicating the amplification of noise in the sub-
sequent refinement iterations.

It is not difficult to see why the presence of noise in
the projection data does not have a severe effect on the
gradient calculation. We partition the gradient vector
$q(x) = JTr as follows

rqðxÞ ¼
hf
hg

� �
; ð12Þ

where hf 2 Rn3 and hg 2 R3m. It is easy to show that

hf ¼
Xm
j¼1

PT
j rj ¼

Xm
j¼1

PT
j ðbj � P jf Þ ð13Þ

and

hTg ¼ ðc/1 � � � c/mch1 � � � chmc
w
1 � � � cwmÞ; ð14Þ

where

c/j ¼ rTj g
/
j ;

chj ¼ rTj g
h
j ;

cwj ¼ rTj g
w
j ;

ð15Þ

and g/j , g
h
j , and gwj are given by (9).

From Eq. (13) it clearly follows that the hf component
of the gradient vector is simply a sum of the back-pro-
Fig. 10. Comparison of relative errors as a function of number of
iterations (expressed in terms of wall clock time) for LBFGS algorithm
applied to noise-free and noise-corrupted TFIID data.
jected residual vectors. It is important to note that the
oscillatory noise components present in the 2-D projec-
tion data bj and those introduced in the intermediate 3-
D structure f can often be well represented by linear
combinations of the left and right singular vectors asso-
ciated with the zero or small singular values of the pro-
jection operator Pj, respectively (Hansen, 1997). Because
the noise present in bj tends to lie in the null space of PT

j ,
and because the noise introduced in f tends to lie in the
null space of Pj, a significant portion of these undesir-
able components is likely to be annihilated or attenuated
in the projection and back projection calculations in
(13). Furthermore, when the noise components in 2-D
projection images are uncorrelated, the sum of the
back-projected residual vectors will tend to have an
averaging effect that yields a higher SNR in hf.

To ascertain the effect of noise on the hg portion of
the gradient vector (14), it is sufficient to notice that
g/j is in the intersection of the numerical ranges of Pj

and P(/j + D/,hj,wj). Therefore, g/j is numerically
orthogonal to the intersection of the null spaces of PT

j

and PT(/j + D/,hj,wj), which contains most of the noise
components in rj. Hence, the c/j element of the hg vector,
which is the inner product between g/j and rj, is unlikely
to be contaminated by noise. Similar arguments can be
applied to the chj and cwj elements of the hg vector.
4. Discussion

We have formulated the single particle reconstruction
and orientation determination problems as a unified
nonlinear optimization problem. To solve it, we have
applied a quasi-Newton method and demonstrated that
the method allows simultaneous refinement of the 3-D
density map and of the Eulerian angles that describe ori-
entations of 2-D projections. We have illustrated how to



10 C. Yang et al. / Journal of Structural Biology xxx (2004) xxx–xxx

ARTICLE IN PRESS
approximate gradient of the objective function through
finite difference, and have pointed out that the gradient
calculation itself is significantly less expensive than per-
forming an exhaustive search in the orientation param-
eter space, as is done in the projection matching
algorithm. We also have argued that the gradients
would not be as sensitive to the noise in the data as
one could expect. Using simulated data we have demon-
strated that the numerical scheme we have developed in-
deed converges to the desired optimal solution. In our
tests the initial guess used to start off the iterative opti-
mization procedure was within practically encountered
vicinity of the true minimizer of the objective function.

The algorithm proposed in this paper remains a local
optimization algorithm that is only effective when one
has an initial approximation to the 3-D structure and
initial estimates to the orientation parameters that are
sufficiently close to the optimal solution of the problem
(1). Our algorithm is most effective when a globalization
strategy is available to bring the initial guess of the 3-D
structure and orientation parameters within the conver-
gence radius. While in this work we have omitted the
translation errors, the presented mathematical frame-
work is quite general and additional optimization
parameters, such as shift and defocus settings can be
easily introduced.

Although the gradient calculation can be carried out
efficiently, the quasi-Newton search direction provided
by the LBFGS algorithm may not be the best search
direction in terms of the convergence rate of the optimi-
zation algorithm. An alternative to the LBFGS algo-
rithm is the Gauss–Newton algorithm commonly used
to solve nonlinear least squares problems. In a Gauss–
Newton algorithm, the true Hessian of q(x) is approxi-
mated by B = JTJ, where J is the Jacobian matrix de-
fined in (8). Consequently, we need to solve the linear
system

JðxkÞTJðxkÞsk ¼ �rqðxkÞ ð16Þ
at each Gauss–Newton iteration to obtain a Gauss–
Newton search direction. Because the Jacobian matrix
is quite large but sparse, it is more appropriate to solve
the above linear system by using an iterative method
such as the LSQR algorithm developed in (Paige and
Saunders, 1982). An iterative method does not require
B = JTJ to be formed explicitly. It only requires one to
provide an efficient way to calculate the matrix vector
product of the form y ‹ JTJ x. In our case, this is en-
tirely possible due to the sparsity structure of J illus-
trated in (8). The need to solve the linear system (14)
makes the Gauss–Newton method somewhat less attrac-
tive because the method is more expensive per iteration.
However, since the Gauss–Newton method may provide
a better search direction, it may reduce the number of
iterations required to reach a local minimizer of q(x) sig-
nificantly. The trade-off between following better search
directions to reduce the number of iterative steps re-
quired to reach the minimum of (1) and the computation
cost for generating these search directions will be ex-
plored in future studies.

More work is also required to investigate the perfor-
mance of the iterative optimization scheme on realistic
data. In particular, we plan to further investigate the
effectiveness of the optimization scheme on noisy projec-
tion images. The method is not expected to be effective
when the SNR in the projection data is very low because
in that case the derivative calculations based on finite
difference typically do not provide a reliable search
direction. One possible work around to this problem
would be to identify an appropriate surrogate function
for q(x). A surrogate function is a function that shares
the same local minimizer with that of the true objective
function. It must be smooth and easy to evaluate,
although it may notably differ from the true objective
function outside of the neighborhood of the optimal
solution. One potential candidate of a surrogate func-
tion is

q̂ð/i; hi;wi; f Þ ¼
1

2

Xm
i¼1

kP ð/i; hi;wiÞf � b̂ik2; ð17Þ

where b̂i is a low-pass filtered version of bi.
In addition to the use of a surrogate function, we may

also apply regularization techniques to the optimization
procedure to reduce noise amplification. Several regular-
ization techniques have recently been investigated
(Hanke and Hansen, 1993). One commonly used tech-
nique is to add a penalty term in (1) to prevent the noise
component in the data to grow. That is, we may choose
to optimize, for example,

q̂ð/i; hi;wi; f Þ ¼
1

2

Xm
i¼1

kP ð/i; hi;wiÞf � b̂ik2 þ kkf k2;

ð18Þ
where k is a judiciously chosen regularization parameter.
If the Gauss–Newton algorithm is used to choose a
search direction, one can then apply the technique of
trust-region to regularize the optimization procedure.
The resulting algorithm is the well-known Levenberg–
Marquardt algorithm (Levenberg, 1944; Marquardt,
1963; More, 1978).

The presented algorithm has to be treated as a proof
of concept rather than as a demonstration of a fully
functional method. Nevertheless, the preliminary results
are sufficiently encouraging to warrant this report.
Moreover, we clearly outlined future directions of work
and we argued that incorporation of additional terms is
feasible and mathematically tractable. The addition of
translation parameters is straightforward. The defocus
settings, ignored in present work, can be added on two
levels. First, the functional (1) can be expanded in order
to explicitly take into account various defocus settings
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of the EM data. This was previously attempted by oth-
ers and us and the results were encouraging (Penczek
et al., 1997; Zhu et al., 1997; Zubelli et al., 2003; Sorzano
et al., 2004). Second, since the initial defocus settings of
the particles (or groups of them) are usually known, the
related variables can be inserted into (1) and refined
along with other variables (Mouche et al., 2001). Final-
ly, the unified framework of (1) can be further expanded
along the lines of (18) to include additional terms, in par-
ticular to integrate the homology modeling (Marti-Re-
nom et al., 2000) with the EM structure determination.
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